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Figure 1. Two views of the structure of the 2:1 complex of perfluoro-
glutarate 8 with tetrahydrofuran. Fluorine atoms are represented by
spheres of arbitrary size, and all hydrogen atoms are omitted for clarity.

An X-ray crystallographic study of this complex has revealed
that its unit cell contains the 2:] structure shown in Figure | and
a second, closely related 6:1 motif.> In both complexes, the
macrocyelic 22-membered ring of perfluoroglutarate 8 is ap-
proximately planar and surrounds a hole nearly 12 A long and
7 A wide. In the 2:1 complex, the oxygen atom of each THF
molecule interacts symmetrically with the mercury atoms of a
1,2-phenylenedimercury unit, and one THF is bound above the
plane of the macrocyclic ring while the other lies below. In the
6:1 complex, two molecules of THF are bound above the mac-
rocyclic ring by similar interactions and two are bound below. The
additional molecules of THF interact outside the ring with in-
dividual atoms of mercury. Both structures obey two rules gen-
erally followed by complexes of Hg(II): mercury forms two strong
collinear primary bonds, and it retains appreciable acidity in the
plane perpendicular to these primary bonds, allowing secondary
coordination. Thus the endocyclic C-Hg—-O angle in the 2:]
complex is 174 (2)°, and the C-Hg-O angle involving the oxygen
atom of THF is 100 (2)°. Other angles and distances are similar
to those found in related derivatives of 1,2-phenylenedimercury!
and in phenylmercuric trifluoroacetate.

Of special importance is the distance from mercury to the
coordinated oxygen of THF, which is 2.85 (4) A in the 2:1 com-
plex. Since the van der Waals radii of oxygen and mercury are
approximately 1.4 and 1.5-1.73 A" respectively, the mercury—-
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oxygen interactions in the complexes are moderately strong. As
a result, the bound molecules of THF resist elimination during
drying at 25 °C/0.1 Torr. Nevertheless, all are displaced when
a better Lewis base like bidentate dimethoxyethane is added. The
particular orientation of the four strongly electrophilic sites in
perfluoroglutarate 8 should make it ideal for the recognition and
selective binding of molecules containing two basic sites separated
by about 7 A.

The remarkably efficient formation of the large ring of per-
fluoroglutarate 8 is a consequence of the rigidity of the 1,2-
phenylenedimercury units, the collinearity of primary bonds to
mercury, and the favorable dimensions and conformation of
perfluoroglutarate bridges. Perfluorosuccinate bridges may be
too short to allow a similar macrocyclization, and the antiperi-
planar orientation of carboxylate groups normally preferred by
perfluorosuccinates may be an additional disadvantage.’

Constructing macrocyclic multidentate Lewis acids by using
perfluorodicarboxylate bridges to link strongly electrophilic sites
is a simple, powerful, and potentially general strategy. Study of
the structure and coordination chemistry of these macrocyclic
multidentate Lewis acids should be richly rewarding.
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Recently there has been renewed interest in the preparation
and properties of transition-metal-amide complexes.’? Later
transition-metal amides may have catalytic utility in the synthesis
of amines and other nitrogen-containing organic compounds? but
to date very few have been reported. The instability of these
complexes has been attributed to the unfavorable d < p interaction
for later transition metals.!* Because of this, the majority of the
amide complexes reported have contained «a-nitrogen groups such
as SiR; which can withdraw p= electron density from the nitrogen
and thus stabilize the M—N bond.
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Primary amide complexes are extremely rare and with few
exceptions have involved early transition metals. A recent gas-
phase study provided evidence that D°(Co*-NH,) could be less
than 19 kecal/mol.*3> We report here on the formation of iron
and cobalt primary amide complexes in the gas phase and on their
chemistry and thermochemistry which, to the contrary, indicates
relatively strong metal-amide bonding.

Experiments were performed on two instruments, a prototype
Nicolet FTMS-1000 equipped with a 5.2-cm cubic-trapping cell
situated between the poles of a Varian 15-in. electromagnet
maintained at 0.9 T and a Nicolet FTMS-2000 dual cell instru-
ment maintained at 3.0 T.%" Laser desorption was used to
generate Co* and Fe* from pure foils of the appropriate metal.
MOH™ and M(cyclopentadiene)* were produced via reactions 1°
and 2,'® respectively. Cyclopentane and nitromethane reagents
were introduced into the cell via a pulsed valve'! to avoid com-

M* + CH;NO, — MOH* + CH,NO )
M* + ¢-C;H;q — M(c-CsHg)* + 2H, 2)
(M = Co, Fe)

plicating secondary reactions. NH; was introduced into the cell
~400 ms later via a second pulsed valve. Double resonance
ejection experiments were used to isolate ML* for reaction with
NH; and to isolate MNH,* for subsequent reactions.!> Argon
was used as the collision gas for collision-induced dissociation
(CID) experiments'® at a pressure of ~1 X 107 Torr. Argon
also served to collisionally cool MOH* and M(c-CsHg)*, with
~100-150 collisions occurring prior to reaction with NH,.14

CoOH* and FeOH* react with NH, by reaction 3. From

MOH* + NH; — MNH,* +H,0 3)
(M = Co, Fe)

D°(Co*-OH) = 71 % 3 kcal/mol and D°(Fe*-OH) = 73 £ 3
keal/mol, reported previously,'s reaction 3 implies D°(Co*-NH,)
> 56 £ 3 kcal/mol and D°(Fe*-NH,) > 58 + 3 kcal/mol.!¢
CoNH,* reacts with benzene via displacement of NH,* to form
Co(benzene)*, but it is unreactive with acetonitrile, indicating
68 = 5 kcal/mol = D° (Co*-benzene)!” > D°(Co*-NH,) >
D°(Co*-CH,CN) > 61 + 4 kcal/mol.'® Thus, we assign D°-
(Co*™-NH,) = 65 = 8 kcal/mol. NH," is not displaced from
FeNH,* by benzene, indicating D°(Fe*-NH,) > D°(Fet-
benzene) = 55 + 5 keal/mol,!” which is consistent with D°-
(Fe*-NH,) > 58 % 3 kcal/mol obtained from reaction 3.
Both CoNH,* and FeNH,* react with propene and cyclo-
propane, reactions 4 and 5, to generate presumably metal-allyl
species. Reaction 4 implies D°(Fe*-NH,) < 72 % 7 kcal/mol,
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MNH,* + propene — M*(allyl) + NH, 4)
MNH,* + cyclopropane ~— M*(allyl) + NH; (5)
(M = Co, Fe)

from D°(Fe*-allyl) = 56 % 7 kcal/mol reported previously.'
Reactions 3 and 4 indicate 72 & 7 kcal/mol > D°(Fet-NH,) >
58 £ 3 keal/mol from which we assign D°(Fe*-NH,) = 67
12 kcal/mol. Reaction 4 also implies D°(Co*-allyl) > 50 + 7
keal/mol, which is in accord with a previously reported value of
D°(Co*-allyl) > 74 kcal/mol.?°

The MNH,* ions may consist of a metal amide (I), a metal
hydride nitrene (II), or a metal dihydride nitride (III). Both

H
M*—NH,  H—M*=NH H—wMmE=N
I I 11

FeNH,* and CoNH,* undergo CID via direct cleavage to form
M*, exclusively, at all energies studied (0-100 eV) indicating I
as the structure since loss of H* and/or H, would have been
expected as products from II and III. Displacement of NH,* from
CoNH,* by benzene and the absence of H* and/or H, dis-
placement also suggest structure I. MNH,* (M = Co, Fe) does
not undergo H/D exchange with D,, C,D,, or propene-d,2! but
it does react with propene—d; to produce the metal-perdeuterioallyl
cation and NH,D, reaction 6, exclusively. Absence of H/D
exchange is again consistent with structure I. Finally, FeNH*,
formed in reaction 7, reacts with benzene by reaction 8. The

MNH,* + propene-d, — MC,Ds* + NH,D  (6)
FeO* + NH, — FeNH* + H,0 )
FeNH?* + benzene — C;H,N* + Fe (8)

analogous reaction is not observed with MNH,* further indicating
I1 is probably not the structure. Reactions 7 and 8 imply a value
of 81 kcal/mol > D°(FeNH") > 41 kcal/mol, obtained from
D°(Fe*-0) = 68 % 3 kcal/mol* and assuming that aniline parent
cation is the product in reaction 8.

Interestingly, M—c-CsHg* (M = Co, Fe) reacts with NH; by
reactions 9-12. Collisional activation of what is presumably
Fe(c-CsHs)(NH,)*, generated in reaction 10, yields loss of NH

Fe Co

MI(c-CsHe)(NHa) 3 34 (9)

+ MT(c-CgHg)NHp) + Hp 79 9 (10)
Mlc-CsHg)  + NH3 ‘E MY (c-CsHg)NHg) + H' 15 2 (11
MNHgt + c-CgHg 3 55 (12)

(M =Co, Fe)

(15%) and NH, (85%) at low energies (0-20 ¢V lab) and loss
of NH, (41%), ¢-CsH; (10%), NH (30%), and both ligands (19%)
at higher energies (20-100 eV lab).

The gas-phase thermochemical results presented here for
FeNH,* and CoNH," indicate that, contrary to previous belief,
these species do not have intrinsically weak M*-NH, bonds. A
variety of metal-amide complexes are currently under further
chemical and photochemical investigation in our laboratory.
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